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Shape deformation as a fundamental geometric operation underpins a wide range of applications, from
geometric modelling, medical imaging to biomechanics. In medical imaging, for example, to quantify
the difference between two corresponding images, 2D or 3D, one needs to find the deformation between
both images. However, such deformations, particularly deforming complex volume datasets, are prone to
the problem of foldover, i.e. during deformation, the required property of one-to-one mapping no longer

gﬁyw"rjsé . holds for some points. Despite numerous research efforts, the construction of a mathematically robust
Fol?:vef ormation foldover-free solution subject to positional constraints remains open. In this paper, we address this chal-

lenge by developing a radial basis function-based deformation method. In particular we formulate an
effective iterative mechanism which ensures the foldover-free property is satisfied all the time. The
experimental results suggest that the resulting deformations meet the internal positional constraints.
In addition to radial basis functions, this iterative mechanism can also be incorporated into other defor-
mation approaches, e.g. B-spline based FFDs, to develop different deformable approaches for various

One-to-one mapping

applications.

Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

Shape deformation is an active topic of research in geometric
modelling, biomechanics, and computational anatomy, which in-
volves analysis and manipulation of 2D and 3D datasets. For in-
stance, in computational anatomy, deformation techniques are
usually deployed for accurate alignment of patient brain scans
with a stereotactic atlas in order to quantify the morphology of
anatomical structures. This is to understand the variability of brain
anatomy by comparing and contrasting volumetric measurements
between different patients, e.g. identifying the morphological ele-
ments that characterise the attributes of respective groups [2].
Moreover, high dimensional deformation techniques are useful
not only in 3D volume data analysis, but also 4D flow MR Imaging.
For example, 3D deformation fields can incorporate prior probabil-
ity density functions from training sample sets into volume dataset
segmentation and registration algorithms [22]. 4D-MRI further
measures and visualises the temporal evolution of complex flow
patterns in a 3D volume [5]. In biomechanics, deformation meth-
ods are used to mimic the static and dynamic behaviour of the ob-
jects inside the human body through the musculoskeletal model.
This model is usually applied to the simulation of continuously
deformable organs and tissues, such as muscles, ligaments and
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tendons [13]. The deformation of the tissue shape plays an impor-
tant role in computing the muscles and joint forces using this mod-
el [15].

However, all the above mentioned techniques do encounter the
same difficulty when the amount of deformation is large, which
means that unexpected foldovers are likely to appear in the result-
ing deformations. In computational anatomy, this implies that the
mapping between the source and target datasets is not injective.
This is a tricky issue for many applications where large deforma-
tion is inevitable, such as landmark matching via large deformation
[3,11,30]. Despite numerous effects, anomalies, including irregular
edges, spikes and jumps, still appear in image warping [7]. In bio-
mechanics, foldover will violate the constraint of topology preser-
vation. One obvious case is that an improper deformation may
cause an intersection between muscles and bones when simulating
the human limb movement. In geometric modelling, foldovers of-
ten lead to self-intersection of the deformed surface. In general,
there are two kinds of self-intersections, global intersection (e.g.
intersection of different regions of a surface) and local self-inter-
section (e.g. adjacent faces/pixels overlapping). This paper focuses
on the latter. The objective of our research is to develop a mecha-
nism to ensure that large deformation does not result in mesh
anomalies, i.e. the resulting datasets are foldover-free.

Our work here is primarily concerned with robust foldover-free
deformations for high dimensional datasets. We first derive a gen-
eral numerical condition, called the foldover-free condition, which
guarantees no foldover occurs for an arbitrary dimensional dataset.
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Our main contribution is to formulate a generalised iterative defor-
mation mechanism by incorporating this condition. We then em-
ploy radial basis functions (RBFs) to estimate the iterative step
length. The second contribution of this paper is that the proposed
iterative mechanism can guarantee the transformations locally
invertible. Finally, the proposed iterative mechanism is further ex-
tended to other deformation schemes, e.g. B-spline based FFDs.
This is the third contribution of this paper. Experiments will fur-
ther validate the effectiveness and robustness of the proposed iter-
ative algorithm in handling large deformations, some of which are
topologically complex.

The paper is organised as follows. Section 2 briefly reviews the
related work. Section 3 gives an overview of our foldover-free
shape deformation method. In Section 4, we further describe the
foldover-free iterative mechanism in detail. Applications and dis-
cussions are given in Section 5. The conclusions and future work
are presented in Section 6.

2. Related work

Image registration is to determine the correspondence between
the source and target images. Herein, shape deformation is de-
scribed as the transformation between the source and target do-
main. For medical imaging, the mapping is from 3D to 3D in
general, and is nonlinear (or nonrigid) in practice. A desirable prop-
erty is the preservation of the topology of anatomical structures,
which is closely related to the property of one-to-one mapping of
the transformation. There is an extensive literature that addresses
both the theoretical aspects of nonrigid image registration and
practical implementations. For a detailed review, the reader is re-
ferred to [10]. Herein, we focus on a subcategory, the basis function
expansions. The transformations can be based on radial basis func-
tions [23], B-splines [19] or wavelets [21]. They are smooth and can
effectively handle large deformations. Additionally, from a numer-
ical perspective, radial basis functions have a small number of de-
grees of freedom and can provide fast closed-form solutions.
However, these traditional transformations are not invertible in
general, i.e. they do not preserve the topology of an object. Recent
works in computational anatomy [11,3] have presented the regis-
tration approaches based on diffeomorphic nonlinear transforma-
tions for one-to-one differential mappings. As applying viscous
fluid flow models, diffeomorphic mappings can deal with large
deformations. However, the challenge is to solve complex partial
differential equations that integrate the velocity field over time
along a geodesic path. The implementation thus involves a large
number of degrees of freedom, resulting in high computational
complexity. This makes such methods unattractive for clinical
applications. How to overcome the non-invertibility of the tradi-
tional deformation approaches is becoming an active research
issue.

In biomechanics, one often analyses and predicates the forces,
stresses and strains that occur inside the human body during
movement using a musculoskeletal model. For example, to model
the limbs, muscles cannot be simply represented as a set of straight
lines from the origin to insertion, as the complex morphology
makes the muscles warp around passive structures, the bones.
Computing the muscle forces had to take into account the bone
shapes [15,6]. To estimate muscle parameters, the muscle bound-
aries of the quantitative CT scans were first manually traced at
each vertebral level, then the 3D models of the individual muscles
were reconstructed accordingly for parameter estimation in [1].
One challenge in their research is how to prevent the disappear-
ance of existing or new structures during deformation. In another
example of biomechanics research, a similar musculoskeletal mod-
el is developed for motion analysis, such as clinical gait analysis.

Gait is a well-defined motion type that is a repetitive sequence
occurring from heelstrike to heelstrike. Several biomechanical
models of the lower limb have been developed for the computation
of joint angles, joint forces and moments [16]. They have been ap-
plied to the investigation of treatment planning that addresses
orthopaedic pathology and prevents injury. Similar to [1], they
firstly measured a set of markers on the body and then retarget a
standard 3D anatomy model accordingly for musculoskeletal mod-
elling. It is essential to ensure the deformed 3D anatomy model is
topology preserved.

Another important application of shape deformation is in CAD
field. [8] gives a survey of spatial deformation methods. We only
recap several papers here that address the self-intersection issue.
[24] noted the ‘“space-tearing” phenomenon and proposed the
Simple Constrained Deformation (SCoDef), which assigns each con-
strained point an independent region of influence so that the defor-
mation is bounded by a union of these spherical regions. Further
work, e.g. Sweepers [25], Warp Sculpting [26], Blendeforming
[27] and Vector-Field Based Deformation [28], also adopted the
similar idea as SCoDef. Essentially, shape deformation requires that
transformations must be invertible. Unfortunately, B-spline based
FFD transformations are not invertible in general. Invertibility of
transformations is the intrinsic property causing foldovers. Thus,
it is meaningful to seek the invertible transformations for shape
deformation. The distinct advantage of our proposed algorithm is
to guarantee the local invertibility of large deformations. Addition-
ally, many methods of shape deformation also suffer from unde-
sired volume changes, even resulting in local self-intersection
[29]. Shape- and volume-preserving deformation techniques are
therefore receiving more and more attentions.

3. Algorithm overview

Considering a given dataset S in R", a transformation U is a one-
to-one mapping which maps the points X € S into the individual
corresponding points U of another domain € in R" with arbitrary
m constraint point pairs (X; < Uj), i.e.

XeS—UX) eQ
{subjectto UxH)=U;, i=1,....m

Our algorithm is developed based on radial basis functions (RBFs).
This is due to many well behaved properties of the RBF scheme,
e.g. mesh-free, C* continuous and ability to handle large deforma-
tions. In particular the RBF scheme is very suitable for the imple-
mentation of the positional constraint based deformation, since
the radial basis functions simplify the multidimensional representa-
tion of the deformation through a radial distance metric. In contrast,
B-spline expansions conventionally use the linear combinations of
univariate forms to construct multidimensional basis functions.
Extending from the bivariate to a trivariate case, there is a prolifer-
ation in control points that makes B-spline based FFDs difficult in
practice [8]. Therefore, using RBFs will not lead to any new control
points both for triangular meshes and tetrahedral ones.

Unlike the previous applications of RBFs [9,20], in our algo-
rithm, the RBF scheme is used to compute the displacement of
the point’s coordinates, that is, the deformation fields,

Auy = PiX) + Y 2 (IX = Gll), i=1,....n @
J

where the displacement is represented as a vector of AU=
(Auy,.. ., Auy,)T, RBF coefficients denote /; C;€R" represents the
constraint points in Q, and P(X) is an affine transformation, i.e.
Pi(X) = aip + >_p_auxx (herein, ay, k=0,1,...n are affine coeffi-
cients), n stands for the dimensionality of the datasets. Our
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intention is to introduce foldover-free constraints through the
deformation fields of Eq. (1).

Although there are various forms of radial basis functions, we
utilise the thin plate spline (TPS) as the basis functions ¢ here
rather than others, e.g. multiquadric interpolation (MQ). This is be-
cause for the large and global deformation, TPS performances bet-
ter than MQ [23]. The deformed U is obtained by updating
U(X) = X + AU. For next iteration, let X — U(X).

Our deformation algorithm is summarised as below. The pro-
posed algorithm is executed iteratively, and the superscript j
stands for the iteration index below. m points in the dataset are
constrained to the specified positions: CEO) denotes the initial posi-
tions, and their destination locations are denoted as C;,i=1,...m.
The iterative mechanism will be described in detail in the follow-
ing section.

(1) Input: Initial dataset S and a set of user-specified
constraint point pairs (Cﬁo),Ci*),i: 1,...,m.

(2) Loop: estimate the scaling factor 6 by Eq. (6) (see
Section 4) based on the configuration of the current
m constraint point pairs (C . C}),i=1,...,m.

(3) Computing the current constraint points’ displacements
by ACV*D = 5(C; — €1y, such that CV*" = €9 4+ ACU*Y.

(4) Computing the displacements of points on sW by
Eqg. (A2) (see Appendix A) and updating S0, gD,

(5) End Loop until all C¥ reach C;.

Fig. 1 illustrates our RBF based deformation algorithm foldover-
free under large deformation. For the sake of visualisation, our
method is performed on a 2D mesh. Moreover, for some extreme
deformations, the final deformed mesh may not always converge
to the most ideal positions by our approach (see Fig. 1d). This
may be because either the RBF scheme is not flexible enough or
the foldover-free condition prevents the constrained points from
reaching the desired locations. To deal with the extreme deforma-
tions, a simple strategy is to subdivide meshes (or tetrahedral
ones), so as to make the mesh more flexible as shown in Fig. 1e.

4. Foldover-free iterative mechanism

From a mathematical point of view, a “foldover-free” deforma-
tion gives a “one-to-one” mapping between the original surfaces
(or datasets) and their target domains. We will first formulate a fol-
dover-free condition, and then explain our iterative mechanism in
a general form.

4.1. Foldover-free condition

The goal of our work is to develop a foldover-free deformation
approach with a set of the positional constraints. It requires that
the mapping U(X) be globally univalent or “globally one-to-one”,
that is, the topology or the connection relationship between any

pair of vertices in the datasets should remain unchanged before
and after the deformation. Mathematically it means the determi-
nant of the Jacobian matrix must be positive everywhere,
det(VU) > 0. (2)
According to the Gershgorin circle theorem, a sufficient condi-
tion of satisfying Eq. (2) can be given as,
CUN
OXi

ou;
| 3)

Jj=1j##i

where i =1,...,n. The geometric meaning of Eq. (3) is that the vec-
tors ou;/o(xy, ..., Xp) are linearly independent of each other. For 2D
scenarios, this implies that the included angle of the vectors is less
than 7. For 3D scenarios, such three vectors should not be co-planar.
Eq. (3) is called the foldover-free condition.

4.2. Iterative framework based on RBFs

Our deformation algorithm employs an iterative framework and
the displacements of vertices are determined considering the con-
dition of Eq. (3), which eliminates foldovers. To this end, we need
to limit the length of each displacement vector by introducing a
scaling factor o. Herein we firstly illustrate the geometric meaning
of the sufficient condition Eq. (3) as below, and then show the scal-
ing factor ¢ as the iterative steplength.

The regions of the 1st order partial derivatives in R" defined by
Eq. (3) can be further described as follows, i=1,...,n,

Ac; .

(rl,...,1+n,...,r”):|r,-}g‘MXjK’1< ol>'5’ j=1,...n
Qi(0) = n )

T+r> > rjl

j=1j#i
4)

where (ry,...,1+r,..,1,) denotes a point in  J),
Aci = (Ax!,...,Ax™)" denotes as the displacements of all the con-
straint points, K is a symmetric matrix filled with the radial basis
functions ¢y = ¢(||Ck — Gl|), k,j=1,...,m and the constraint points’
coordinates, M(X) = (¢(||IX — C|)), ..., ¢(|IX - i) X1, - .., X5, 1) and
My, denote the partial derivatives of M(X) (For details, refer to
Appendix A). The scaling factor § is not a constant, and depends
on the displacements of the constraint points. For simplicity, as-
sume that the vectors {Ac;} have the same distribution. The regions
Qi(6) would then have the same size in terms of Eq. (4). In an n-
dimensional Euclidean space, the condition of Eq. (3) can be de-
scribed as,

i(MXjK” (AOC">>252 <%, (5)

j=1

for the region Q¢d)andi=1,...,n.

To further illustrate the geometric meaning of Eq. (4), we con-
sider both 2D and 3D scenarios here. When n =2, Eq. (4) is ex-
pressed as,

A A
91(6):{(1+r1,rz):\r1|< 'MXK’1< Cl)’a,\mg ’Mﬂ(’]( gl>‘6,1+r1 >|r2|}

0

A A :
Q05 = {(r1,1 1) < 'MXK‘1< CZ)’a,\m < ’Mﬂ(']( gz>'5,1 > |r1|}

0
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Fig. 1. Illustration of our method performing on a 2D mesh with large deformation. The red lines in (a) show the two constrained points are required to move to their
individual destinations in the deformed domain, (b) shows the result by our method, while (c) showing the result by the non-iterative RBF scheme. It can be observed that
triangles are folding. Moreover, (d) shows these two constrained points are required to move farther than that in (a). Applying the subdivision strategy, (e) shows the result by
our method. The red points in (e) indicate the new vertices generated by the subdivision process. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Fig. 2. lllustration of the condition of Eq. (5) in 2D scenarios. The dashed lines
denote the undetermined boundaries.

Fig. 2 illustrates the regions of Q1(5), ©-(5). The dashed line is used
to highlight these undetermined boundaries. The condition of Eq.
(3) implies that vectors ou/d(x, y), ov/d(x, y) should be linearly inde-
pendent of each other. Fig. 2 intuitively illustrates this concept by
five lines: [y, I, I3, l4, Is. For example, r; and r, should be above line
I3 or under line l4, and above line Is, so that the linear independence

can be guaranteed. This can be achieved by the scaling factor ¢ in
Eq. (4). Moreover, for simplicity, assume that the vectors Ac;, Ac;
have the same distribution. The regions Q1(4), £25(5) would then
have the same size in terms of Eq. (4). This will lead to the overlap
of straight lines [; and I, and form a new dividing line, which is
ry+r,=0 in Fig. 2. Line r; +r, =0 guarantees that the included
angle is less than 7. Consequently, the 2D form of the condition
Eq. (5) can be re-formulated as,

2 2
(Mxlrl (Agl )) &+ (Mylr1 (Ag1 )) & <3
q ACZ 2 ) 1 ACQ 2 2 ]'
MK ) ) ot (MK ) ) 9t <)

When n = 3, Eq. (4) is given by,

Ac
(1+4711,12,713) : 11| < ‘Mxlfl( 0] ) ‘57
Ac
21(9) = Ira| < ‘MyK*l( 01>‘5, ;
-1 ACI
Il S {MeKH 0 )10, 111> | =+ 3]
A
(r,1412,13) 11| < ’MXI(]( gz ) ‘57
Ac
Q(0) = { Ir2| < ‘Myl(l( 02>‘57 ’
-1 ACZ
Irs < MKTH 707 )10, 1412 > 1| + s
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Fig. 3. The illustration of the condition of Eq. (5) in 3D scenarios.

AcC
(r1,12,14+713) 1 11| < ‘MXK’I( 3)‘5,

0
A
| < ‘MyK’1< 53 ) ‘5,

Ac
Irs) < ‘MZK* ( 03)

Fig. 3 shows the regions of 2(5), £2(5), 25(6). Taking the condi-
tion of Eq. (3) into account, we hope to point out that the dividing
plane of r; + 1, + 13 = 0 guarantees that the determinant of Jacobian
is greater than zero. Similar to the 2D scenarios, the 3D form of the
condition Eq. (5) is expressed as,

_ ACl 2 - _ AC] 2 _ AC] 2

MK 2 M1<1< )> 2 (1\/121(1( >> 2
( < 5 )) 5 +( () o)) @<

(1\/1 K (AC2)>252 + <M K (AC2>>252 + (1\/1 K <ACZ>>252 <1

* 0 v 0 g 0 3

(M K <AC3>>252 + <M K (AC3>>252 ¥ (M K <AC3)>252 <1

* 0 Y 0 § 0 3
In terms of Eq. (5), every region can provide their individual
estimations of the scaling factor. For the entire dataset S, it is

straightforward to select the minimum as the estimation of § as
below,

23(9) =

5,] +13> |T2‘+|T1‘

wi—

0= I)I(lElSIIO(X) (6)
where
~1/2
nf1 (& (A2
5(X) = ming — (;(ijk ( 0 ))
Note that vectors Ac;, i=1,...,n are the differences of the current

constraint point positions and their individual destinations’ posi-
tions. Scaling factor § depends on the configuration of the current
constraint points. For any constraint point G, its displacement
needs to be scaled by ¢ iteratively to approximate its destination
C;. The configuration of all the current constraint points may be
defined as the current state of the dataset. When the constraint

points’ positions are updated, the state is changed accordingly.
Thus, 6 can also be regarded as the iterative step length.

So far we have outlined the proposed iterative deformation
mechanism and estimated the scaling factor. The displacements
of the constraint points are adaptively changed based on the esti-
mated scaling factor ¢ of Eq. (6). We also hope to point out that
Eq. (6) is a sufficient condition, which means that there might be
scenarios where Eq. (6) is not satisfied, but still is foldover-free.
There is a simple explanation, that is, the scaling factor is estimated
by the regions defined on continuous domains. Compared to con-
tinuous domains, the discrete settings (e.g. triangle mesh) are too
sparse. Thus, Eq. (6) seems to be overstrict to the discrete settings.
What can be guaranteed however is by satisfying Eq. (6), we can
both eliminate all possible cases of foldovers and preserve mesh
topology.

4.3. Extension to B-spline scheme

B-spline based FFD approaches have been widely applied to var-
ious geometric modelling applications. We can extend the iterative
deformation mechanism to include the B-spline scheme. Without
loss of generality, a 2D cubic B-spline function is represented by
a patch as follows,

3 3

URX) =X+ > Bi(w)B;(v)ACy, (7)

i=0 j=0

where 0 <w, v< 1, B;, B denote the basis functions, and AC; denotes
the displacement vector of the control points. According to Eq. (7),
the deformation field X is updated by X «— U(X) in an iterative way.
We can deduce the scaling factor § as,

5\ 172
(G’
V2 (mecn Bumcn)z 7
5 = min B GI (8)
[ Cep i)+
V2 (BW(ACZ) N MY
Bu(cy) T Bulcy)

(For the details of computation, refer to Appendix B please.) For a
3D cubic B-spline scheme, we can yield an analogous estimation
of §, as well as Eq. (8).

5. Applications

For simplicity, in our implementations, our deformation algo-
rithm presented in Section 3 employs the RBF scheme rather than
the B-spline one. This is because extending the B-spline scheme
from the bivariate to trivariate case will involve a large number
of control points. To highlight the advantage of the proposed iter-
ative deformation mechanism, we perform the deformation sepa-
rately by our iterative algorithm (i.e. with constraint the scaling
factor) and the non-iterative RBF scheme (i.e. without constraint
of the scaling factor) in the following.

This section will first illustrate some interesting properties of
the proposed algorithm and then address some important applica-
tions on medical imaging and biomechanics.

5.1. Numerical properties

In general, to estimate the scaling factor 4, it is required to test
all the points X within a dataset. However, our observation sug-
gests that the constraint points always hold larger displacements
than the others at each iteration. Thus, it is sufficient to estimate
the § only by testing the constraint points instead of all the points.
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Fig. 4. Illustration of bending and twisting a bar by our method. For large bending, we firstly placed 5 constraint points on the skeleton of the bar. Several bending states of

the bar are generated.

&
©

e

Fig. 5. Illustration of the foldovers on 3D volume data. Applying 3D FFDs to the gyrus of brain volume data, and the resulting deformation in (a) the whole deformed brain
gyrus; (b) the local detail of foldovers; (c) the isosurface with mesh corresponding to (b). For comparison, the results by our approach are shown in (d)-(f). Note that there are

350 constraint points in (a) while only 28 constraint points in (d).

Volume preservation is one of the desired properties for shape
deformation. [ 18] proposed to firstly embed triangular meshes into
tetrahedral ones and then perform some deformation approaches
directly on the tetrahedral meshes. However, this usually leads
to a large computational burden. Since the RBF scheme is mesh-
free, our deformation algorithm will not incur extra computational
cost. To illustrate the effectiveness of our algorithm, Fig. 4 shows

some extreme deformation examples, i.e. a bar is firstly twisted
by 360° and then bent by 150°. Notice that taking into account
the volume, it is natural to place some constrained points manually
along the skeleton of an object, e.g. 5 constrained points on the
skeletons of the bar. This is similar to the ideas of the sketch-based
editing system [14] and the skeleton-curve deformation method
[24]. The user does not necessarily need to place the constraint

Fig. 6. Simulation of a child brain white matter development. (a) The deformation from the source (1st model, a child brain white matter) toward the target (3rd model in (b),
an adult brain white matter); (b) shows the deformation from the target (3rd model) toward the source (1st model in (a)). The 3rd model of (a) and the 1st model of (b) are the
most similar to each other. We did not further deform the source model to the target, since further deformation would result in perceptible distortion. Herein, there are 40

constraint point pairs.
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Fig. 7. Retargeting a standard 3D human body model: (a) shows the standard 3D anatomic model including skin, muscles and bones; (b) shows the results of applying non-
iterative RBF scheme. The muscles (red) intersect with the skin; (c) shows the result by our iterative algorithm; (d) shows the skin cage that contains 508 vertices as
constraint points, while the shin mesh contains 14,652 vertices; (e) shows the intersection of the upper limb muscles. To highlight the intersection of muscles, muscles are
depicted by different colours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

points on the precise skeletons of the objects. In our implementa-
tion, imprecise skeleton constrained points are fine, which guides
to the desired shape.

5.1.1. Computational complexity

The core of our RBF-based deformation approach is to update
the RBF coefficients at each iteration. The main cost is therefore
to compute the inverse of a real symmetric matrix, which costs
O(nm?), where m is the number of the constraint points and n de-
notes the dimensionality of the dataset. The time complexity can
be estimated as O(knm?), where k denotes the iteration number.
However, in practice, updating the whole dataset costs the most
of the running time compared to updating the RBF coefficients,
e.g. volume data. This is because the number of constraint points
is always far smaller than that of the points within a dataset.
And our algorithm usually converges with 3-6 iterations. Although
it is usually costly to invert a matrix, because the dimension of the
matrices to be inverted is small, in practice the cost is negligible.

5.1.2. Limitations

Our iterative deformation mechanism guarantees to produce
diffeomorphic deformation fields and the experiments in Figs. 1
and 4 also validate the effectiveness of handling large deforma-
tions. However it does not always guarantee to converge to the

most ideal positions for large bending deformations. Experiments
in Fig. 4 suggest that our approach can work well when the bend-
ing angle is less than 60°. Therefore, bending the bar by 150° in
Fig. 4, we had to do it in steps. In this example, we bent the bar
by 50° for each step for three steps.

5.2. Application to brain volume data

Voxel-based volume deformation has been widely used in im-
age segmentation and registration, e.g. CT and MRI datasets. Our
iterative algorithm is suitable for the volume data, since the RBF
scheme is mesh-free. Our algorithm can prevent foldovers with
only a small number of constraint points. This is in contrast to
the other non-iterative deformation methods, such as the B-spline
FFDs, which cannot overcome this numerical difficulty even if
many constraint points are added. For comparison, we performed
a large deformation on the precentral gyrus of a segmented MRI
brain volume dataset by a cubic B-spline FFDs [17] and our
algorithm respectively, as shown in Fig. 5a and d. Since we were
concerned about the large deformation rather than image registra-
tion here, the cubic B-spline FFDs did not take into account the
voxel intensity similarity measure, nor the constraint of the foldo-
ver-free condition. Foldovers within the volume deformation are
usually hidden inside the volume dataset rather than on its surface.
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d e f

Fig. 8. Illustration of bending and turning up forearm: (a) and (d) show the results by our iterative algorithm. Herein, the skeletons illustrate the forearm movements. To
compare with the non-iterative deformation (i.e. no constraint of scaling factor), (b), (¢), (e) and (f) show the intersections of the tissues after the non-iterative deformation on
the individual upper halves, while our iterative results being put on the individual lower halves for comparison; (b) shows the muscles (red) and bone (grey) piercing the skin;
(e) shows the intersection between the muscles (highlighted by red and green); (c) and (f) further show the intersections of the two muscles and bones. Note that there are 35
constraint points to be placed on the bones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

neutral position .

\\%\}}

Fig. 9. Illustration of the jumping/landing of the left leg. The top row shows the results by the non-iterative and iterative algorithms. There is no intersection inbetween two
muscles by our iterative algorithm. The 2nd row shows the change of the muscle shapes. There are 20 constraint points to be placed on the bones.
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To see it clearly, we utilised the Marching Cubes to extract the iso-
surface for rendering purposes. This can highlight the foldovers oc-
curred in the 3D volume data by comparing the meshes shown in
Fig. 5c and f. One can note the self-intersections of triangles in
Fig. 5¢c.

In the next example, we applied our deformation algorithm to
the simulation of child brain development. We demonstrate that
our method is very useful in the analysis of the pediatric and adult
neuroimaging data in a common stereotactic space for develop-
mental neuroscience. Growing from a child to an adult gives rise
to a significant deformation of the brain, but matching both brain
objects requires topology preservation. Due to the complex topo-
logical structure of the brain white matter, ensuring foldover-free
during the deformation is essential. Fig. 6 shows the prediction
growth of the segmented white matter of a 5-year child brain to-
ward that of an adult brain. The segmented brain models and the
relevant landmarks by experts are available on the Internet Brain
Segmentation Repository (www.cma.mgh.harvard.edu/ibsr). Since
the landmark correspondence depends on the expert, i.e. keep-
the-user-in-the-loop paradigm, we were only able to obtain the
correspondence of a small number of landmarks. Because of the
limited landmark pairs, some local distortions are inevitable. In or-
der to give a convincing prediction, we need to reduce the un-
wanted distortion as much as possible. In Fig. 6, we therefore
deformed these two brain white matter models separately in the
opposite directions.

5.3. Application to biomechanics

In biomechanics, the dynamical behaviours are often analysed
using a musculoskeletal model, where the forces, stresses and
strains of the relevant tissues and organs are computed, because
it is impossible to measure these quantities directly that occur in-
side the human body during an activity. One can first manually
measure a set of markers placed on the skin and then retarget a
standard human body anatomic model accordingly [13]. The
resulting deformed model can be employed to estimate these
quantities. Topology preservation is again a critical constraint for
such a deformed model. In Fig. 7, we retargeted the anatomic mod-
el of an ordinary human body to a much fatter body model based
on a set of markers on the skin. The original human body model
is reconstructed from the Visual Human Dataset. For comparison,
Fig. 7b and c show the results of applying the non-iterative RBF
scheme and our iterative approach respectively. It can be noted
that our algorithm can effectively prevent the unexpected intersec-
tions of different tissues. Fig. 7b only shows the intersection of the
muscles and the skin surface. Removing the skin layer, one can find
the more unexpected intersections between muscles as shown in
Fig. 7e.

Moreover, to simulate the kinematics of body limbs, muscles (or
soft tissues) and their deformed shapes must be taken into ac-
count. For example, simulating the elbow bending and twisting,
we need to calculate the joint angles, forces and moments. Such
calculation is particularly sensitive to the deformed shapes of the
muscles close to the joint rotation centres. Since many muscles
(or soft tissues) wrap around more than one bone, any movement
must avoid bone-muscle penetration [6,15]. Simulating such activ-
ities without taking care of the anatomical structure tends to result
in unexpected intersections. Fig. 8 shows the results of bending the
elbow (around 75°) and turning the forearm upward (around 70°)
by our iterative algorithm. For comparison, we also performed the
conventional non-iterative RBF scheme here. The intersections of
tissues are indicated by the arrows. In this experiment, the move-
ment of the forearm’s skeleton is given in advance. The constrained
points are placed on the bones. (For more details, refer to the video
demos in the Supplementary Material.)

Fig. 9 shows an application of 3D muscle modelling for the ankle
joint. [12] applied the musculoskeletal model to the biomechanical
analysis of lateral ankle ligaments. They used a motion capture de-
vice to capture the left-legged jump shots of an athlete for the ankle
joint parameter estimation. However, they did not further recon-
struct the 3D models of muscles. [1] emphasised that the muscle
parameters for musculoskeletal modelling, e.g. cross-sectional area
and moment arm data, should be obtained based on 3D models of
muscles. To this end, they extracted the 3D models of muscles from
a set of the quantitative CT scans manually. In Fig. 9, we simulated
the jumping/landing action for the left leg. 3D muscle modelling is
performed by our shape deformation approach.

All the experiments were undertaken using Matlab on an Intel
Pentium 4 3.2 GHz PC with 1 Gbyte of RAM. Although the code is
far from optimised, because our method has a low computation
complexity as discussed earlier, it is very fast for 2D meshes and
3D polyhedrons.

6. Conclusion and future work

In this paper, we have incorporated the high dimensional
deformable fields into the deformation of high-dimensional
datasets, so that the deformed datasets both satisfy the positional
constraints and preserve the topology. This is useful for the defor-
mation of medical volume data and tetrahedral meshes due to its
ability to handle the geometric complexity of such datasets. The
RBF scheme maintains many good numerical properties, such as
smoothness, flexibility and low degrees of freedom. But such
traditional transformations are not invertible in general. Thus, they
cannot preserve the topology during deformation. Our main contri-
bution is to design the RBF-based functions that are diffeomorphic
in an iterative way. We have also demonstrated that the proposed
iterative mechanism can be extended to incorporate other defor-
mation schemes, e.g. B-spline FFDs.

In our implementation, the thin-plate spline (TSP) is used as
the radial basis function. TSP offers global support but not com-
pact support. Compact support has the advantage of reducing
the computational cost and is fast for optimisation. Thus, intro-
ducing the compact support RBF into our approach will be one
of our future objectives. In addition, we also note that the RBF
scheme does not work well when dealing with large bending
deformations. The current strategy is to add several intermediate
states of the constrained points, which works fine. This motives
us to seek more powerful functions to overcome this weakness
in our future work.
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Appendix A

We rewrite Eq. (1) here, such that the displacements linearly
depend on the constraint points. To this end, the RBF coefficients
(4,a;) can be computed by the following linear system, where

) ; T T
i = ity -5 im) 5 @G = (Qio, - - -, Ain) s

Ai _1 /[ Ac .
<ai>_1< (0>7 i=1,....n (AT)
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Herein, there are m given constraint points. The displacements of all

the constraint points are denoted as Ac; = (Ax!,...,Ax™)". K is a
symmetric matrix filled with the radial basis functions ¢; = ¢(||Cx
=Gl k,j=1,...,m and the constraint points’ coordinates. (For a
detailed RBF representation, refer to [4].)

Substituting (4, a;) of Eq. (A1) into Eq. (1), we therefore obtain a
new expression of Eq. (1) as follows, i=1,...,n,

A .
m :M(X)K*( OC')

MX) = (&(IX = Cill);- - d(IX = Canll), X1, X, T)

Note that Eq. (A2) describes a linear system that solves the
displacement of any point X (i.e. {Au;}) using the displacements
of the constraint points, (i.e. {Ac;}). The kernel is M(X)K~! that
describes the current configuration of the constraint points. The
displacements {Ac;} indicate the directions that the constraint
points are moving in. The derivatives of o(uy, ..., u,)/d(X1, ..., X,)
are computed as follows,

A .
1+ij1<-1( OC'> i—j
= , (A3)

Ac;
-1 i e e e .
MK (O) i#,i,j=1,...,n
where M,, denote the partial derivatives of M(X).

Moreover, substituting the derivatives of Eq. (A3) into Eq. (3)
yields,

AC; n
1+Mx11<*1( 0 )> >

j=1j4i

(A2)

ou;
8Xj

Ac; .
MXI,K”( 0 )‘, i=1,...,n (A4)

In general, the displacements of the constraint points {Ac;}
can be obtained by the differences of the current coordinates of
the constraint points and their individual destinations’ coordi-
nates. To satisfy the above inequalities, we need to limit the
length of each displacement vector by scaling the vectors {Ac;}
as follows,

AC; n
1+M K )5
+ My, < 0 )9> Z

j=Tj#i

Ac;
MXJK"( o ) ‘67 (A5)

where § denotes a scaling factor and 6 > 0.
The regions in R" defined by the inequalities of Eq. (A5) can be
further described as follows, i=1,...,n,

AC;
(rl,...,1+r,»7....r,1):\rj|<‘MXjK’1< ')‘,] 1,.

Ql(é) = n 5
T+ri> Y rl
j=1g#i
(A6)
where (ry,...,1+71;,...,1,) denotes a point in Q,(5). These regions

are essentially of the ranges of the corresponding 1st order partial
derivatives.

Appendix B

According to the 2D cubic B-spline function defined in Eq. (7),
let X = (x, %)", U= (uy, )" and Cjj = (c‘{, cg)r. The relevant deriva-
tives can be given as follows,
ouq

1
—=1+Byw(Ac + B,(Ac ,
) ( 1)Bw(c1) ol 1)3,,(61)
oy 1

1 _ B, (Ac +B,(Ac ,
DX, w ])Bw(cz) o ])B,,(cz)

19,153

ox, ~ BwlAG) g

1
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oy o 1 1
e = 1+ BulAc) g

where
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3 3
=YY BB,
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Moreover, in terms of Eqs. (5) and (6), introducing the scaling
factor ¢ yields,

B a2\
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Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jbi.2013.12.011.
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